Skip to contents

Return the best calibration parameter set according to one goodness-of-fit metric

Usage

select_params(df_cb, param)

Arguments

df_cb

data frame. The result of the calibration process.

param

numeric. Goodness-of-fit measures. "NSE", "rNSE", "NSE", "mNSE", "MAE", "PBIAS", "cp", "R2",...

Value

A vector with the 3 parameters

Examples

# \donttest{
# the data of the TN scenario
data(catch_data_TN)
data(annual_data_TN)
# the parameter for the calibration of the model
n_iter <- 2 # number of iterations
# the lower limits for all params (alpha_P, alpha_L, sd_coef)
low <- c(10, 0.000, 0.1)
# the upper limits for all params (alpha_P, alpha_L, sd_coef)
upp <- c(70, 0.3,  0.9)
# years in which the model should be executed
years <- 1990:2018
# execution of the calibration
df_calib <- calib_green(catch_data_TN, annual_data_TN, n_iter, low, upp,
years)
#> [1] "Elapsed time: 7.81000000000006"
# Extract the best set of parameter according to a Goodnes of fit metric
gof_mes <- "NSE"
NSE_bestParams <- select_params(df_calib, gof_mes)
# }